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The sea urchin-shaped particles of CaCO3, i.e., spherical va-
terite covered with needle-shaped aragonite, were formed by
template mineralization of CaCO3 in the presence of the anionic
gold nanoparticles modified spherical vaterite in water.

Biomineralization, which produces biological inorganic–or-
ganic composites, is a process of the mineral deposition on self-
assembled organic templates with the assistance of water-solu-
ble macomolecules.1,2 Many researchers have focused on in vi-
tro processes of calcium carbonate crystal nucleation, growth,
and interface transition with synthetic organic templates such
as low-molecular weight additives, linear polymers, and self as-
sembled monolayers.3–6 We have studied the crystallization of
CaCO3 in the presence of anionic poly(amidoamine) dendri-
mers, which are spherical and proposed as mimimcs of anionic
proteins, and found that the surfaces of metastable vaterite par-
ticles were effectively stabilized by the anionic dendrimers.7

These results motivate us to design ‘‘spherical linkers’’ for sur-
face funtionalization of CaCO3. The spherical linkers are rigid
and completely defined, and functional groups are unable to at-
tach to the same inorganic surfaces because of the steric hin-
drance of the spherical structures. The strong bonding to the in-
organic surfaces is also expected by a chelate or cluster effect.8

Here, we used tiopronin-protected gold nanoparticles (1) as
spherical linkers to prepare surface-functionalized particles and
provided the template mineralization of CaCO3 to construct
high-ordered structures (Figure 1). The tiopronin-protected gold
nanoparticles (1) were prepared by the method of Murray et al.
reported previously.9 The gold nanoparticles were purified by di-
alysis against water two times using cellulose dialysis mem-
brane. The solution was removed under reduced pressure to ob-
tain the gold nanoparticles as black-red powders. Average gold
core diameter from a TEM image was 2 nm. The thermal loss
of the organic fraction of the nanoparticles was 30wt % by
TGA. The content of tiopronin in (1) was calculated to
1.8mmol/mg. A main advantage of using anionic metal nano-
particles instead of the dendrimers is the ease of preparation. Al-
though a few reports already described crystallization of CaCO3

by using functionalized metal nanoparticles such as 4-mercapto-
phenol- and 4-mercaptobenzoic acid-protected gold nanoparti-
cles,10,11 surface modification of CaCO3 with functionalized
nanoparticles has not been achieved. To the best of our knowl-
edge, this is the first report on the nucleation and growth of
CaCO3 on a surface-functionalized CaCO3 with synthetic spher-
ical linkers. We expect that this process helps to understand how
to develop the new biomimetic materials and template mineral-
ization mechanism.

For preparation of the surface-functionalized vaterite parti-
cles, each 4.95-mL aqueous solutions of 0.1M CaCl2 and
0.1M (NH4)2CO3 was injected via syringe into 180mL of water
containing 0.13mg of 1 (pH 7.6) at 30 �C. A slow increase in the
turbidity of the solution was observed after incubation for 5–
15min from addition of the calcium reactants. The product
was isolated by filtration after incubation for 1 day. The crystal-
line CaCO3 was washed with water to remove the contaminated
1 that were not involved in the crystals. A color of the crystalline
was dark-brown, which indicates modification with the gold
nanoparticles. The molar ratio of calcium ion to tiopronin on 1
was 0.5.

A SEM image of the crystal morphology was shown in
Figure 2. The obtained product was mostly spherical vaterite
with a little rhombohedral calcite. We confirmed the CaCO3

crystal phase by X-ray powder diffraction measurement
(XRD).12 The XRD pattern of the product in Figure 2 indicated
major reflections corresponding to vaterite (87%) with a little
calcite reflections. The content of 1 in the product was 5.4wt
% by elemental analysis. The vaterite particles did not transform
into thermodynamically more stable forms in contact with water
for more than 1 week. Vaterite is thermodynamically most unsta-
ble in the three crystal systems of CaCO3; calcite, aragonite, and
vaterite. In general, vaterite transforms into calcite when in con-
tact with water within 3 days. These results indicate that the va-
terite surface was stabilized by 1 to prevent phase transformation
to calcite.

The template mineralization was carried out in the presence
of the surface-functionalized vaterite particles. The calcium re-
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Figure 1. Schematic diagram of the sea urchin-shaped CaCO3

via template mineralization on tiopronin-protected gold nano-
particles modified spherical vaterite.

Figure 2. SEM image of the surface-functionalized vaterite
particles by precipitation condition in the presence of 0.13mg
(1).
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actants were injected via syringe into 180mL of an aqueous so-
lution in the presence of 49mg of the vaterite particles with
0.013mg of the additional 1 at 30 �C. The product was isolated
after incubation for 1 day. The sea urchin-shaped CaCO3 with a
little rhombohedral calcite was observed by SEM (Figure 3).
From the SEM images, needle-shaped crystals on the surface
of the vaterite particles appeared to elongate which increasing
the amount of the calcium reactants.

In comparison with the XRD pattern of the surface-modified
vaterite products, aragonite reflections appeared in the XRD pat-
terns of the products. Intensity of the aragonite reflections in-
creased with an increase in the amount of the calcium reactants.
This suggested that the needle-shaped crystals were aragonite. In
the absence of the additional gold nanoparticles, only aggregated
vaterite particles were obtained. The surface-modified spherical
vaterite provided interfacial active sites for nucleation of the sec-
ond crystalline phase (the needle-shaped aragonite) to produce a
hierarchical crystal growth. The presence of 1 in the solution al-
so played an important role for the controlled growth of needle-
shaped aragonite on the surface of the gold nanoparticles modi-
fied spherical vaterite.

We obtained the same sea urchin-shaped CaCO3 under the
precipitation condition by decreasing the concentration of 1
compared to the product in Figure 2. We injected 4.95-mL aque-
ous solutions of 0.1M CaCl2 and 0.1M (NH4)2CO3 via syringe
into water containing 0.026mg of 1 at 30 �C. We monitored the
time-dependent crystal growth of the product. The crystals iso-
lated after 10min incubation (Figure 4a), were brown colored
and spherical vaterite with about 3mm diameter. The spherical
vaterite of which polymorph was confirmed by XRD was an ag-
gregate of discs vaterite. After isolation at 20min incubation, ti-
ny crystals were grown on the surface of the spherical vaterite
(Figure 4b). Finally, the sea urchin-shaped CaCO3 was formed
after incubation for 90min (Figure 4c). Brown color of the sam-
ple faded out in the case of the crystalline products isolated after
further incubation. The second stage of the formation of the sea
urchin-shaped CaCO3 under in-situ precipitation condition was
nucleation and growth of the sharp needle-shaped aragonite on
the surface of the gold nanoparticles modified spherical vaterite
with about 9� 1:3mm diameter.

We speculate that the remaining 1 and the calcium reactants
in the bulk phase are transferred to the rough surface of the va-

terite particles for the second nucleation and then competitively
grow into sharp needle-shaped aragonite in a restricted space of
the vaterite at 30 �C.

The results showed the possibility for new biomimetic com-
posite materials and understanding of biomineralization mecha-
nism. We expect that the functionalized gold nanoparticles
would be used as an excellent template for mineralization, be-
cause of their ease of preparation.9
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Figure 3. SEM images of the products by template mineraliza-
tion on the surface-functionalized vatrite particles. The amount
of the calcium reactant was a) 0.49mM and b) 0.78mM, respec-
tively.
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Figure 4. SEM images of the time-dependent crystal growth of
the product in Fig. 3 by isolation of the crystals after incubation
for 10 (a), 20 (b), and 90min (c), respectively.

Chemistry Letters Vol.33, No.3 (2004) 311

Published on the web (Advance View) February 14, 2004; DOI 10.1246/cl.2004.310


